Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Birth Defects Res ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2233725

ABSTRACT

OBJECTIVES: We describe clinical characteristics, pregnancy, and infant outcomes in pregnant people with laboratory-confirmed SARS-CoV-2 infection by trimester of infection. STUDY DESIGN: We analyzed data from the Surveillance for Emerging Threats to Mothers and Babies Network and included people with infection in 2020, with known timing of infection and pregnancy outcome. Outcomes are described by trimester of infection. Pregnancy outcomes included live birth and pregnancy loss (<20 weeks and ≥20 weeks gestation). Infant outcomes included preterm birth (<37 weeks gestation), small for gestational age, birth defects, and neonatal intensive care unit admission. Adjusted prevalence ratios (aPR) were calculated for pregnancy and selected infant outcomes by trimester of infection, controlling for demographics. RESULTS: Of 35,200 people included in this analysis, 50.8% of pregnant people had infection in the third trimester, 30.8% in the second, and 18.3% in the first. Third trimester infection was associated with a higher frequency of preterm birth compared to first or second trimester infection combined (17.8% vs. 11.8%; aPR 1.44 95% CI: 1.35-1.54). Prevalence of birth defects was 553.4/10,000 live births, with no difference by trimester of infection. CONCLUSIONS: There were no signals for increased birth defects among infants in this population relative to national baseline estimates, regardless of timing of infection. However, the prevalence of preterm birth in people with SARS-CoV-2 infection in pregnancy in our analysis was higher relative to national baseline data (10.0-10.2%), particularly among people with third trimester infection. Consequences of COVID-19 during pregnancy support recommended COVID-19 prevention strategies, including vaccination.

2.
Public Health Rep ; 136(3): 315-319, 2021 05.
Article in English | MEDLINE | ID: covidwho-1093917

ABSTRACT

We aimed to describe coronavirus disease 2019 (COVID-19) deaths among first responders early in the COVID-19 pandemic. We used media reports to gather timely information about COVID-19-related deaths among first responders during March 30-April 30, 2020, and evaluated the sensitivity of media scanning compared with traditional surveillance. We abstracted information about demographic characteristics, occupation, underlying conditions, and exposure source. Twelve of 19 US public health jurisdictions with data on reported deaths provided verification, and 7 jurisdictions reported whether additional deaths had occurred; we calculated the sensitivity of media scanning among these 7 jurisdictions. We identified 97 COVID-19-related first-responder deaths during the study period through media and jurisdiction reports. Participating jurisdictions reported 5 deaths not reported by the media. Sixty-six decedents worked in law enforcement, and 31 decedents worked in fire/emergency medical services. Media reports rarely noted underlying conditions. The media scan sensitivity was 88% (95% CI, 73%-96%) in the subset of 7 jurisdictions. Media reports demonstrated high sensitivity in documenting COVID-19-related deaths among first responders; however, information on risk factors was scarce. Routine collection of data on industry and occupation could improve understanding of COVID-19 morbidity and mortality among all workers.


Subject(s)
COVID-19/mortality , Emergency Responders/statistics & numerical data , Mass Media , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , SARS-CoV-2 , United States/epidemiology , Young Adult
3.
J Public Health Manag Pract ; 27(3): 229-232, 2021.
Article in English | MEDLINE | ID: covidwho-1005742

ABSTRACT

Reopening in-person education in public schools during the coronavirus 2019 (COVID-19) pandemic requires careful risk-benefit analysis, with no current established metrics. Equity concerns in urban public schools such as decreased enrollment among largely Black and Latinx prekindergarten and special needs public school students already disproportionately impacted by the pandemic itself have added urgency to Chicago Department of Public Health's analysis of COVID-19 transmission. Close tracking within a large school system revealed a lower attack rate for students and staff participating in in-person learning than for the community overall. By combining local data from a large urban private school system with national and international data on maintaining in-person learning during COVID-19 surges, Chicago believes in-person public education poses a low risk of transmission when the operational burden imposed by the second wave has subsided.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/statistics & numerical data , Education/standards , Guidelines as Topic , Schools/statistics & numerical data , Schools/standards , Students/statistics & numerical data , Adolescent , Chicago/epidemiology , Child , Child, Preschool , Cities/epidemiology , Cities/statistics & numerical data , Female , Humans , Male , Pandemics , Risk Assessment/methods , Risk Assessment/standards
4.
Open Forum Infect Dis ; 7(11): ofaa477, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-954375

ABSTRACT

BACKGROUND: People experiencing homelessness are at increased risk of coronavirus disease 2019 (COVID-19), but little is known about specific risk factors for infection within homeless shelters. METHODS: We performed widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) polymerase chain reaction testing and collected risk factor information at all homeless shelters in Chicago with at least 1 reported case of COVID-19 (n = 21). Multivariable, mixed-effects log-binomial models were built to estimate adjusted prevalence ratios (aPRs) for SARS-CoV-2 infection for both individual- and facility-level risk factors. RESULTS: During March 1 to May 1, 2020, 1717 shelter residents and staff were tested for SARS-CoV-2; 472 (27%) persons tested positive. Prevalence of infection was higher for residents (431 of 1435, 30%) than for staff (41 of 282, 15%) (prevalence ratio = 2.52; 95% confidence interval [CI], 1.78-3.58). The majority of residents with SARS-CoV-2 infection (293 of 406 with available information about symptoms, 72%) reported no symptoms at the time of specimen collection or within the following 2 weeks. Among residents, sharing a room with a large number of people was associated with increased likelihood of infection (aPR for sharing with >20 people compared with single rooms = 1.76; 95% CI, 1.11-2.80), and current smoking was associated with reduced likelihood of infection (aPR = 0.71; 95% CI, 0.60-0.85). At the facility level, a higher proportion of residents leaving and returning each day was associated with increased prevalence (aPR = 1.08; 95% CI, 1.01-1.16), whereas an increase in the number of private bathrooms was associated with reduced prevalence (aPR for 1 additional private bathroom per 100 people = 0.92; 95% CI, 0.87-0.98). CONCLUSIONS: We identified a high prevalence of SARS-CoV-2 infections in homeless shelters. Reducing the number of residents sharing dormitories might reduce the likelihood of SARS-CoV-2 infection. When community transmission is high, limiting movement of persons experiencing homelessness into and out of shelters might also be beneficial.

SELECTION OF CITATIONS
SEARCH DETAIL